Verify the main app mostly sleeps

This validates that the main watch app spends at
least 99.5% of it's time sleeping in the first 10
seconds.
This commit is contained in:
2020-06-14 18:12:36 +00:00
parent 0ee9d39e81
commit 08085c465d
8 changed files with 130 additions and 71 deletions

View File

@@ -37,7 +37,7 @@ BigDigitalTimeScreen::BigDigitalTimeScreen(BSP::DisplayDriver &driver,
, m_last_time() , m_last_time()
, m_manager(manager) , m_manager(manager)
, m_menu_screen(menu_screen) , m_menu_screen(menu_screen)
, m_display_seconds(true) , m_display_seconds(false)
{} {}
static char get_char_for_digit(uint8_t bcd_digit) static char get_char_for_digit(uint8_t bcd_digit)

View File

@@ -104,10 +104,16 @@ static BigDigitalTimeScreen g_digital_time_screen(g_display, g_screen_mgr, g_mai
[[noreturn]] void main() { [[noreturn]] void main() {
g_gpioa.init();
g_gpioa.enable();
g_dbg0.configure_output(GpioDriver::output_mode_t::PUSH_PULL,
GpioDriver::output_speed_t::LOW);
// Set up the system clock // Set up the system clock
RtcDriver::init(); RtcDriver::init();
SystemTimer::set_timer(RtcDriver::get_system_timer()); SystemTimer::set_timer(RtcDriver::get_system_timer());
LowPower::init(); LowPower::init(g_dbg0);
// Initialize the tasks // Initialize the tasks
g_lptim_pwm.init(); g_lptim_pwm.init();
@@ -115,7 +121,7 @@ static BigDigitalTimeScreen g_digital_time_screen(g_display, g_screen_mgr, g_mai
g_btn_mgr.init(); g_btn_mgr.init();
g_display.init(); g_display.init();
g_screen_mgr.init(); g_screen_mgr.init();
g_screen_mgr.set_root_screen(g_analog_time_screen); g_screen_mgr.set_root_screen(g_digital_time_screen);
g_set_face_screen.add_item(MenuScreenItem("Analog", g_set_face_screen.add_item(MenuScreenItem("Analog",
[]() { g_screen_mgr.set_root_screen(g_analog_time_screen); })); []() { g_screen_mgr.set_root_screen(g_analog_time_screen); }));

View File

@@ -31,9 +31,19 @@ namespace BSP {
using BSP::ReturnCode; using BSP::ReturnCode;
GpioPin *LowPower::m_timing_pin = nullptr;
ReturnCode LowPower::init() ReturnCode LowPower::init()
{ {
enable_debug(); m_timing_pin = nullptr;
return ReturnCode::OK;
}
ReturnCode LowPower::init(GpioPin &timing_pin)
{
m_timing_pin = &timing_pin;
m_timing_pin->write(0);
return ReturnCode::OK; return ReturnCode::OK;
} }
@@ -93,7 +103,13 @@ ReturnCode LowPower::stop()
CLR(RCC->CFGR, RCC_CFGR_STOPWUCK); // MSI oscillator is wake-up from stop clock CLR(RCC->CFGR, RCC_CFGR_STOPWUCK); // MSI oscillator is wake-up from stop clock
SET(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); // low-power mode = stop mode SET(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); // low-power mode = stop mode
if (m_timing_pin != nullptr) {
m_timing_pin->write(1);
__WFI(); // enter low-power mode (Wake from interrupt) __WFI(); // enter low-power mode (Wake from interrupt)
m_timing_pin->write(0);
} else{
__WFI();
}
wakeups++; wakeups++;

View File

@@ -22,6 +22,7 @@
#pragma once #pragma once
#include "Bsp/ReturnCode.h" #include "Bsp/ReturnCode.h"
#include "Bsp/Drivers/GpioDriver.h"
extern uint32_t wakeups; extern uint32_t wakeups;
@@ -32,10 +33,14 @@ public:
LowPower() = delete; LowPower() = delete;
static BSP::ReturnCode init(); static BSP::ReturnCode init();
static BSP::ReturnCode init(GpioPin &timing_pin);
static BSP::ReturnCode sleep(); static BSP::ReturnCode sleep();
static BSP::ReturnCode stop(); static BSP::ReturnCode stop();
static BSP::ReturnCode enable_debug(); static BSP::ReturnCode enable_debug();
static BSP::ReturnCode disable_debug(); static BSP::ReturnCode disable_debug();
static GpioPin *m_timing_pin;
}; };
} }

View File

@@ -32,6 +32,7 @@ using namespace BSP::Schedule;
LowPowerTaskScheduler<10> g_sched; LowPowerTaskScheduler<10> g_sched;
GpioDriver g_gpioa(GPIOA); GpioDriver g_gpioa(GPIOA);
UsartDriver g_test_uart(USART1, g_sched); UsartDriver g_test_uart(USART1, g_sched);
GpioPin g_debug0_pin(g_gpioa, 4);
void board_init() { void board_init() {
g_gpioa.enable(); g_gpioa.enable();

View File

@@ -31,11 +31,13 @@ using namespace BSP::Schedule;
LowPowerTaskScheduler<10> g_sched; LowPowerTaskScheduler<10> g_sched;
GpioDriver g_gpioa(GPIOA); GpioDriver g_gpioa(GPIOA);
UsartDriver g_test_uart(USART2, g_sched); UsartDriver g_test_uart(USART2, g_sched);
GpioPin g_debug0_pin(g_gpioa, 3);
static GpioPin g_tx_pin(g_gpioa, 9); static GpioPin g_tx_pin(g_gpioa, 9);
void board_init() { void board_init() {
g_gpioa.enable(); g_gpioa.enable();
g_tx_pin.configure_alternate_function(4); g_tx_pin.configure_alternate_function(4);
g_debug0_pin.configure_input(GpioDriver::input_pull_t::PULL_UP);
g_test_uart.init(); g_test_uart.init();
RtcDriver::init(); RtcDriver::init();

View File

@@ -30,3 +30,4 @@ void board_init();
extern BSP::Schedule::LowPowerTaskScheduler<10> g_sched; extern BSP::Schedule::LowPowerTaskScheduler<10> g_sched;
extern BSP::GpioDriver g_gpioa; extern BSP::GpioDriver g_gpioa;
extern BSP::UsartDriver g_test_uart; extern BSP::UsartDriver g_test_uart;
extern BSP::GpioPin g_debug0_pin;

View File

@@ -102,6 +102,57 @@ def context_factory():
return create_context return create_context
def measure_frequency(
period: float,
pin_name: str,
executable: str = "sigrok-cli",
driver_name: str = "fx2lafw",
trigger: str = "r",
):
cmd = [
executable,
"-C",
pin_name,
"-d",
driver_name,
"-c",
"samplerate=1M",
"--time",
"{}ms".format(int(period * 1000)),
"-t",
"{}={}".format(pin_name, trigger),
"-P",
"timing:data={}".format(pin_name),
"-A",
"timing=time",
]
print("sigrok-cli cmd {}".format(cmd))
proc = subprocess.run(cmd, capture_output=True, check=True)
lines = proc.stdout.decode("utf-8").split("\n")
reg = re.compile(".*:\\W(\\d+.\\d+)\\W(\\w+)")
periods = []
for line in lines:
m = reg.match(line)
if not m:
break
num = float(m.groups(1)[0])
units = m.groups(1)[1]
if units == "s":
periods.append(num)
elif units == "ms":
periods.append(num / 1000)
elif units == "μs":
periods.append(num / 1000000)
else:
assert False, "Couldnt find units in line '{}', units were '{}'".format(
line, units
)
return periods[::2], periods[1:][::2]
def test_meta_pass(context_factory, logger): def test_meta_pass(context_factory, logger):
serial_dev, jlink = context_factory("Test/Apps/pass.bin") serial_dev, jlink = context_factory("Test/Apps/pass.bin")
text = serial_dev.read_until(TEST_PASS_TEXT) text = serial_dev.read_until(TEST_PASS_TEXT)
@@ -252,6 +303,49 @@ def test_wakeup_irq(context_factory, logger):
assert abs(delta) < 1000 assert abs(delta) < 1000
def test_lptim(context_factory, logger):
serial_dev, jlink = context_factory("Test/Apps/lptim.bin")
state0_periods, state1_periods = measure_frequency(1, "D0")
num_periods = min(len(state0_periods), len(state1_periods))
periods = [state0_periods[i] + state1_periods[i] for i in range(num_periods)]
freqs = list(map(lambda x: 1 / x, periods))
assert (
periods
), "No LPTIM state changes detected, is the right analyzer being used? Is the device connected?"
min_f = min(freqs)
max_f = max(freqs)
avg_f = sum(freqs) / len(freqs)
print("min_f:{}, max_f:{}, avg_f:{}".format(min_f, max_f, avg_f))
assert abs(avg_f - 50) < 0.25
assert min_f > 49
assert max_f < 51
def test_app_lowpower(context_factory, logger):
serial_dev, jlink = context_factory("Application/main.bin", leave_halted=True)
jlink.reset(halt=False)
state0_periods, state1_periods = measure_frequency(10, "D1")
num_periods = min(len(state0_periods), len(state1_periods))
periods = [state0_periods[i] + state1_periods[i] for i in range(num_periods)]
freqs = list(map(lambda x: 1 / x, periods))
assert (
periods
), "No debug pin state changes detected, is the right analyzer being used? Is the device connected?"
min_f = min(freqs)
max_f = max(freqs)
avg_f = sum(freqs) / len(freqs)
pct_sleep = sum(state1_periods) * 100 / sum(state0_periods + state1_periods)
print(
"min_f:{}, max_f:{}, avg_f:{}, pct_sleep:{}".format(
min_f, max_f, avg_f, pct_sleep
)
)
assert len(periods) >= 5
assert pct_sleep > 99.95, "Spent too much time awake"
def test_stop(context_factory, logger): def test_stop(context_factory, logger):
serial_dev, jlink = context_factory("Test/Apps/stop.bin") serial_dev, jlink = context_factory("Test/Apps/stop.bin")
serial_dev.timeout = 70 serial_dev.timeout = 70
@@ -277,72 +371,6 @@ def test_stop(context_factory, logger):
assert abs(delta) < 1000 assert abs(delta) < 1000
"sigrok-cli -C D3 -d fx2lafw -c samplerate=1M --time 1s -P timing:data=D3"
def measure_frequency(
period: float,
pin_name: str,
executable: str = "sigrok-cli",
driver_name: str = "fx2lafw",
):
cmd = [
executable,
"-C",
pin_name,
"-d",
driver_name,
"-c",
"samplerate=1M",
"--time",
"{}ms".format(int(period * 1000)),
"-P",
"timing:data={}".format(pin_name),
"-A",
"timing=time",
]
print("sigrok-cli cmd {}".format(cmd))
proc = subprocess.run(cmd, capture_output=True, check=True)
lines = proc.stdout.decode("utf-8").split("\n")
reg = re.compile(".*:\\W(\\d+.\\d+)\\W(\\w+)")
periods = []
for line in lines:
m = reg.match(line)
if not m:
break
num = float(m.groups(1)[0])
units = m.groups(1)[1]
if units == "ms":
periods.append(num / 1000)
elif units == "μs":
periods.append(num / 1000000)
else:
assert False
return periods[::2], periods[1:][::2]
def test_lptim(context_factory, logger):
serial_dev, jlink = context_factory("Test/Apps/lptim.bin")
state0_periods, state1_periods = measure_frequency(1, "D0")
num_periods = min(len(state0_periods), len(state1_periods))
periods = [state0_periods[i] + state1_periods[i] for i in range(num_periods)]
freqs = list(map(lambda x: 1 / x, periods))
assert (
periods
), "No LPTIM changes detected, is the right analyzer being used? Is the device connected?"
min_f = min(freqs)
max_f = max(freqs)
avg_f = sum(freqs) / len(freqs)
print("min:{}, max:{}, avg:{}".format(min_f, max_f, avg_f))
assert abs(avg_f - 50) < 0.25
assert min_f > 49
assert max_f < 51
def main(): def main():
pytest.main(sys.argv) pytest.main(sys.argv)