Files
timely-reference/test.c
Max Regan fab3332c65 Enable text display on Sharp display
1. Add basic code for Sharp Display
2. Add embedded font (generated by fontem)
3. Add the worst code possible to print strings to the display
4. Rejoice in the beautiful (small) text.
2019-03-04 00:22:01 -08:00

366 lines
10 KiB
C

/**
Copyright 2019, Max Regan
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**/
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include "macros.h"
#include "stm32l0xx.h"
#include "font-notomono-10.h"
/* TODO: Start cleaning up code and adding bounds checking! */
void SystemInit()
{
/**
* Use the MSI for the system clock, and disable all other clocks.
*/
/*!< Set MSION bit. Set by hardware to force the MSI oscillator ON
* when exiting from Stop or Standby mode, or in case of a failure
* of the HSE oscillator used directly or indirectly as system
* clock. This bit cannot be cleared if the MSI is used as system
* clock. */
SET(RCC->CR, RCC_CR_MSION);
CLEAR(RCC->ICSCR, RCC_ICSCR_MSIRANGE);
SET_TO(RCC->ICSCR, RCC_ICSCR_MSIRANGE, RCC_ICSCR_MSIRANGE_6);
/*!< Reset
* SW[1:0] (use MSI oscillator as system clock),
* HPRE[3:0] (do not divide AHB clock in prescaler) ,
* PPRE1[2:0] (do not divide APB low-speed clock)
* PPRE2[2:0] (do not divide APB high-speed clock),
* MCOSEL[2:0] (disable MCO clock),
* MCOPRE[2:0] (disable MCO prescaler) */
CLEAR(RCC->CFGR,
RCC_CFGR_SW | ~RCC_CFGR_HPRE | RCC_CFGR_PPRE1 | RCC_CFGR_PPRE2 |
RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE);
/*!< Reset
* HSION (disable HSI),
* HSIDIVEN (disable 18MHz HSI division)
* HSEON (disable HSE clock)
* CSSHSEON (disable HSE clock monitoring)
* PLLON (disable PLL)
*/
CLEAR(RCC->CR,
RCC_CR_HSION | RCC_CR_HSIDIVEN | RCC_CR_HSEON |
RCC_CR_CSSHSEON | RCC_CR_PLLON);
/*!< Reset HSEBYP bit (disable HSE bypass) */
RCC->CR &= ~RCC_CR_HSEBYP;
/*!< Reset
* PLLSRC (HSI16 is the PLL source),
* PLLMUL[3:0] (3x PLL multiplication)
* Don't touch PLLDIV[1:0], since 0 is undefined
*/
RCC->CFGR &= ~RCC_CFGR_PLLSRC & ~RCC_CFGR_PLLMUL & ~RCC_CFGR_PLLDIV;
/*!< Disable all interrupts */
RCC->CIER = 0x00000000;
/* Vector Table Relocation in Internal FLASH */
SCB->VTOR = FLASH_BASE;
}
void init_lptim()
{
/* Enable APB1 for LPTIM */
RCC->APB1ENR |= RCC_APB1ENR_LPTIM1EN;
// Enable low-speed internal
RCC->CSR |= RCC_CSR_LSION;
while (!(RCC->CSR & RCC_CSR_LSIRDY)) {};
/*!< Set the LSI clock to be the source of the LPTIM */
SET_TO(RCC->CCIPR, RCC_CCIPR_LPTIM1SEL, RCC_CCIPR_LPTIM1SEL_0);
/** Write CR CFGR and IER while LPTIM is disabled (LPTIM_CR_ENABLE not yet set) */
/*!< Disable Interrupts (not needed, this is the default */
LPTIM1->IER = 0;
/*!< Reset
* ENC (Disable encoder mode)
* TIMOUT (disable timeout mode)
* TRIGEN (Trigger count start with software only)
* PRELOAD (Update ARR and CMP registers immediately after write)
* CKSEL (LPTIM is using internal clock source)
* COUNTMODE (LPTIM counter updated on every clock pulse)
* TRGFLT (Do not debounce triggers)
*/
LPTIM1->CFGR &= ~LPTIM_CFGR_ENC & ~LPTIM_CFGR_TIMOUT & ~LPTIM_CFGR_TRIGEN &
~LPTIM_CFGR_TRIGSEL & ~LPTIM_CFGR_PRELOAD & ~LPTIM_CFGR_CKSEL &
~LPTIM_CFGR_COUNTMODE;
/*!< Set
* PRESC (Set prescaler to 128. Using 32kHz LSI as input, this should
* correspond to 250Hz counting.
*/
LPTIM1->CFGR &= LPTIM_CFGR_PRESC;
LPTIM1->CFGR |= 7u << LPTIM_CFGR_PRESC_Pos;
LPTIM1->CR |= LPTIM_CR_ENABLE;
/*!< Do not modify ARR and CMP until after ENABLE bit is set */
/*!< Produce a 60Hz, 50% duty cycle square wave. These values were
* determined experimentally. */
LPTIM1->ARR = 9;
LPTIM1->CMP = 4;
while(!(LPTIM1->ISR & LPTIM_ISR_ARROK)) {}
while(!(LPTIM1->ISR & LPTIM_ISR_CMPOK)) {}
/*!< Enable and start the timer */
LPTIM1->CR |= LPTIM_CR_CNTSTRT;
}
/*!< The buffer that will be used in the future to display on the watch display. */
#define DISPLAY_WIDTH 144
#define DISPLAY_HEIGHT 168
struct display_line
{
uint8_t mode;
uint8_t line;
uint8_t data[DISPLAY_WIDTH / 8];
};
struct display_buffer
{
struct display_line lines[DISPLAY_HEIGHT];
uint16_t dummy;
};
static_assert(sizeof(struct display_buffer) == (DISPLAY_WIDTH / 8 + 2) * DISPLAY_HEIGHT + 2,
"The display buffer structure must be packed");
void display_buffer_init(struct display_buffer *buffer)
{
for (size_t i = 0; i < ARRAY_SIZE(buffer->lines); i++) {
struct display_line *line = &buffer->lines[i];
line->mode = 1; // Update display
line->line = i;
for (size_t j = 0; j < ARRAY_SIZE(line->data); j++) {
line->data[j] = 0xFF;
}
}
buffer->dummy = 0;
}
void display_set_bit(struct display_buffer *buffer, unsigned int x, unsigned int y, uint8_t val)
{
struct display_line *line = &buffer->lines[y];
uint8_t *byte = &line->data[x >> 3];
if (val) {
CLEAR_POS(*byte, x & 7);
} else {
SET_POS(*byte, x & 7);
}
}
void display_set_byte(struct display_buffer *buffer, unsigned int x, unsigned int y, uint8_t val)
{
if (x & 7) {
return;
}
struct display_line *line = &buffer->lines[y];
line->data[x >> 3] = val;
}
static struct display_buffer buffer;
void init_lptim_toggler()
{
init_lptim();
/* Assign LPTIM1_OUT to PA7 */
GPIOA->AFR[0] &= ~GPIO_AFRL_AFRL7;
GPIOA->AFR[0] |= 1 << GPIO_AFRL_AFRL7_Pos;
GPIOA->MODER &= ~GPIO_MODER_MODE7;
GPIOA->MODER |= 2u << GPIO_MODER_MODE7_Pos;
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_7;
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD7;
}
void init_spi_display()
{
RCC->APB2ENR = RCC_APB2ENR_SPI1EN;
GPIOB->OSPEEDR = ~0;
/* Assign SPI_MOSI to PA12 (AFRH5), since PA7 is taken by LPTIM_OUT */
GPIOA->AFR[1] &= ~GPIO_AFRH_AFRH4;
SET_TO(GPIOA->MODER, GPIO_MODER_MODE12, 2u << GPIO_MODER_MODE12_Pos);
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_12;
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD12;
// SPI1 NSS (PA4)
GPIOA->AFR[0] &= ~GPIO_AFRL_AFRL4;
SET_TO(GPIOA->MODER, GPIO_MODER_MODE4, 2u << GPIO_MODER_MODE4_Pos);
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_4;
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD4;
// enable pullup, since the pin doesn't seem to stay up
GPIOA->PUPDR |= 2u << GPIO_PUPDR_PUPD4_Pos;
// SPI1 SCK (PA5)
GPIOA->AFR[0] &= ~GPIO_AFRL_AFRL5;
SET_TO(GPIOA->MODER, GPIO_MODER_MODE5, 2u << GPIO_MODER_MODE5_Pos);
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_5;
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD5;
// SPI1 MISO (PA6)
GPIOA->AFR[0] &= ~GPIO_AFRL_AFRL6;
SET_TO(GPIOA->MODER, GPIO_MODER_MODE6, 2u << GPIO_MODER_MODE6_Pos);
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_6;
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD6;
// Enable Master mode and half the baud rate, so it's set to ~1MHz
SPI1->CR1 |= SPI_CR1_MSTR | SPI_CR1_LSBFIRST;
SPI1->CR1 |= 1u << SPI_CR1_BR_Pos;
SPI1->CR2 |= SPI_CR2_SSOE;
}
void spi_send_blocking(SPI_TypeDef *spi, const uint8_t *data, size_t len)
{
if (len <= 0) {
return;
}
spi->CR1 |= SPI_CR1_SPE;
for (size_t i = 0; i < len; i++) {
while (!(spi->SR & SPI_SR_TXE)) {}
spi->DR = data[i];
}
while (!(spi->SR & SPI_SR_TXE)) {}
// Ensure that NSS is held for long enough to meet the display's thSCS
for (int i = 0; i < 4; i++);
spi->CR1 &= ~SPI_CR1_SPE;
}
const struct glyph *glyph_for_char(const struct font *font, char c)
{
// TODO: This is almost the least efficient way imaginable to implement this
for (int i = 0; i < font->max; i++) {
const struct glyph *g = font->glyphs[i];
if (g == NULL) {
continue;
}
if (g->glyph == c) {
return g;
}
}
return NULL;
}
void display_char_at(int *x_off, int y_off, char c)
{
const struct glyph *g = glyph_for_char(&font_notomono_10, c);
if (g == NULL) {
return;
}
int byte_cols = 2;
for (size_t x = 0; x < g->cols; x++) {
for (size_t y = 0; y < g->rows; y++) {
int byte_x = x >> 3;
int byte_y = y;
uint8_t bit = (g->bitmap[byte_y * byte_cols + byte_x] >> (7 - (x & 7))) & 1;
/* 16 is font max height */
display_set_bit(&buffer, g->left + *x_off + x, y_off + y + 16 - g->top, bit);
}
}
*x_off += g->advance;
}
void display_string_at(int x_off, int y_off, const char *string)
{
int i = 0;
while (string[i]) {
display_char_at(&x_off, y_off, string[i]);
i++;
}
}
void display_update()
{
static uint16_t count = 0;
// for (size_t x = 0; x < DISPLAY_WIDTH / 8; x++) {
// for (size_t y = 0; y < DISPLAY_HEIGHT; y++) {
// display_set_byte(&buffer, (x << 3), y, (((y + count) >> 4) & 1) ? 0xFF : 0);
// }
// }
display_string_at(0, 0, "Hello world!");
count++;
}
int main()
{
/** Enable Port A,B clock */
RCC->IOPENR |= RCC_IOPENR_IOPAEN;
RCC->IOPENR |= RCC_IOPENR_IOPBEN;
/** Enable pin P3 for output */
SET_TO(GPIOB->MODER, GPIO_MODER_MODE3, GPIO_MODER_MODE3_0);
CLEAR(GPIOB->OTYPER, GPIO_OTYPER_OT_3);
CLEAR(GPIOB->PUPDR, GPIO_PUPDR_PUPD3);
init_lptim_toggler();
init_spi_display();
display_buffer_init(&buffer);
while (1) {
display_update();
spi_send_blocking(SPI1, (uint8_t *) &buffer, sizeof(buffer));
FLIP(GPIOB->ODR, GPIO_ODR_OD3);
// for (int i = 0; i < 100000; i++);
}
}